
Shared Code Files
User Guide

Dyalog version 18.2

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2021 by Dyalog Limited
All rights reserved.

 Shared Code Files User Guide

Dyalog version 18.2
Document Revision: 20220124_182

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the prior
written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the United States and
other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
2.1 Benefits Offered by Shared Code Files 3
2.2 Fundamental Limitations 4
2.3 Temporary Limitations 5
2.4 Summary of Limitations 6

3 Performance 8
3.1 Loading 8
3.2 Code Execution 8

4 Technical Reference 10
4.1 Save Shared Code File 10
4.2 Attach Shared Code File 11
4.3 Assimilate Shared Code Files 12
4.4 Detach Shared Code Files 12
4.5 List Shared Code Files 13
4.6 List Slot Names 13

5 Technical Details 15
5.1 Shared Code Files are Read Only 15
5.2 Attaching, Assimilating and Detaching Shared Code Files 16

A Worked Example 21
Index 24

Shared Code Files User Guide

revision 20220124_182 i

1 About This Document

This document is intended as an introduction to shared code files, introduced for the
purpose of improving the performance of large applications while reducing their memory
consumption and initialisation time.

The functionality and behaviour of shared code files has not yet been finalised and
is subject to change by Dyalog Ltd. at any time. Shared code files should be
considered experimental; users are encouraged to experiment with them and
provide feedback to Dyalog Ltd. regarding the benefits and shortcomings of the
current features to help prioritise further work. Users should be aware that the
features of shared code files may change significantly based on feedback.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge, see
https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Information note highlighting material of particular significance or relevance.

revision 20220124_182 1

Shared Code Files User Guide

https://www.dyalog.com/introduction.htm

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that
are available. A full list of the platforms on which Dyalog version 18.2 is supported is
available at https://www.dyalog.com/dyalog/current-platforms.htm. Within this
document, differences in behaviour between operating systems are identified with the
following icons (representing macOS, Linux, UNIX and Microsoft Windows respectively):

revision 20220124_182 2

Shared Code Files User Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

While a standard Dyalog workspace (a .dws file) needs to be read by the interpreter and
loaded in its entirety, a shared code file (a .dwx file) has a structure that allows it to be
attached to the active workspace with a minimum of file operations. This significantly
decreases the start time of application processes, especially when several processes run
on the same machine.

When a shared code file is attached to the active workspace, a list of all the names of the
functions, operators and variables that it contains is loaded into the active workspace.
However, the definitions and values of these names are only paged into virtual memory
the first time that the names are referenced, and they are not loaded into the active
workspace unless their content is modified. In addition, because shared code files are
memory-mapped by the operating system, the definitions and values are shared by
concurrent processes. This means that, if a shared code file is already in use by one
Dyalog application, then the name list can be loaded from shared memory by another
application; the same is true for any of the names that are already in use (unless the
system is low on memory, in which situation memory mapped pages are flushed from
memory).

The use of shared code files is only supported on 64-bit Unicode interpreters and
there are no current plans to extend this support. Shared code files are memory
mapped, and they can only be attached by interpreters that use exactly the same
memory layout as the system that generated them.

2.1 Benefits Offered by Shared Code Files
Many large applications are currently forced to load more code than is necessary
because it is difficult to predict precisely what code will be used. The main benefit of
shared code files is that applications only load code and data on demand.

revision 20220124_182 3

Shared Code Files User Guide

BENEFIT 1: Significantly reduced start-up times for applications

Similarly, computational sub-processses (such as isolates) can be launched in a fraction of
the time that would otherwise be required.

BENEFIT 2: Reduced workspace usage

Workspace size can be reduced or more space can be used to execute code more
efficiently. A shared code file is materialised one page at a time, as memory is
referenced. This means that the contents of comments, which are typically in a separate
part of the file from the actual code lines, are usually only read from file if the code is
edited. Similarly, running a compiled function is unlikely to require loading the source of
the function into virtual memory.

BENEFIT 3: Reduced file I/O and memory consumption

This is most apparent on machines that run several processes using the same code and is
due to the sharing of memory-mapped files.

BENEFIT 4: More efficient application execution

Objects residing in a shared code file remain outside the dynamic portion of the
workspace unless they are modified. In some applications, this means that the
complexity of the active workspace is significantly reduced. As a result, memory
allocations are generally cheaper and less memory needs to be inspected and moved
around when compactions occur.

2.2 Fundamental Limitations
Despite the benefits offered by shared code files, they will not replace the standard
Dyalog workspace due to some fundamental limitations.

RESTRICTION 1: Shared code files are read only

Multiple processes can memory-map shared code files simultaneously; each process that
uses a shared code file is using the contents of that shared code file directly as memory.
This means that a shared code file cannot be updated while it is in use. Instead, when an
application modifies an object that resides in a shared code file, a copy of the relevant
part of the shared code file is made in workspace memory and the original file is not
modified.

revision 20220124_182 4

Shared Code Files User Guide

RESTRICTION 2: Shared code files each have a fixed virtual memory address

A shared code file contains pointers to absolute memory locations contained within it.
This means that the virtual memory address to which it is memory mapped must be fixed
when the memory-mapping occurs. When a shared code file is created, a parameter
specifies the virtual memory address at which it will be loaded and all pointers contained
within it are adjusted to fit this address. If an application uses more than one shared
code file, each shared code file must have a different address.

RESTRICTION 3: Shared code files cannot be shared across architectures

A shared code files cannot be converted in any way when it is used. This means that,
unlike workspaces, component files and arrays transmitted using TCP objects or CONGA,
shared code files cannot be shared between different platforms or versions of Dyalog.

RESTRICTION 4: Shared code files are not workspaces

A shared code file is not a workspace; it is not possible to ⎕CY or)COPY from them.

RESTRICTION 4: 64-bit Unicode only

The benefits of memory mapping are only realisable in 64-bit address spaces. This,
combined with the other fundamental limitations, means that shared code files are only
supported for 64-bit Unicode systems; there are no current plans to extend this support.

2.3 Temporary Limitations
There are several restrictions when using shared code files that could be removed in
future Dyalog versions.

RESTRICTION 1: All objects saved must be visible from the root of the current workspace

The following cannot be saved in a shared code file:
 l GUI namespaces and their derivatives
 l Functions created by starting an auxiliary processor
 l External functions created using name association (⎕NA)
 l ⎕SM

revision 20220124_182 5

Shared Code Files User Guide

RESTRICTION 2: It is not possible to have more than 8 shared code files simultaneously
attached

A maximum of 8 virtual memory addresses are available for shared code files; these slots
have identifiers 1 to 8. In a future release this limit could be significantly increased, but
the fundamental issue of needing a separate slot for each shared code file
simultaneously will remain.

RESTRICTION 3: Cannot)SAVE or ⎕SAVE a workspace that has shared code files attached

It is not possible to)SAVE or ⎕SAVE the current workspace if any shared code files are
attached (they must be assimilated or detached first – see Section 4.3 and Section 4.4
respectively).

RESTRICTION 4: Attaching a shared code file containing namespaces copies all the
namespaces (functions and arrays remain in the shared space)

Attaching shared code files results in data being copied from the shared code files as
needed (see Section 4.4). However, namespaces are always copied.

RESTRICTION 5: Only certain content can be saved in a shared code files

The content of a shared code file is limited to namespaces, nested arrays, simple arrays,
tradfns, tradops, dfns, dops and derived functions (futures and external variables are
instantiated and become arrays). If other content (for example, .NET objects, shared
variables and COM objects) is present in a workspace then that workspace cannot be
saved as a shared code file (see Section 4.1).

2.4 Summary of Limitations
Fundamental limitations:

 l Shared code files are read only
 l Shared code files have a fixed virtual memory address
 l Shared code files cannot be shared across architectures
 l Shared code files are not workspaces
 l 64-bit Unicode only

Temporary limitations:
 l All objects saved must be visible from the root of the current workspace
 l It is not possible to have more than 8 shared code files simultaneously attached

revision 20220124_182 6

Shared Code Files User Guide

 l Cannot)SAVE or ⎕SAVE a workspace that has shared code files attached
 l Attaching a shared code file containing namespaces copies all the namespaces

(functions and arrays remain in the shared space)
 l Only certain content can be saved in a shared code file

revision 20220124_182 7

Shared Code Files User Guide

3 Performance

The main purpose of shared code files is to reduce the execution time and memory
consumption of APL applications.

3.1 Loading
Unless an application uses a large proportion of its constituent code soon after start-up,
it is significantly faster to start that application in a nearly empty workspace and attach
shared code files containing the rest of the code. This also reduces the memory footprint
of the application.

The performance improvement is most noticeable in an environment where several
processes run the same application on a single machine, for example, applications using
isolates and/or running on Citrix servers or other servers. This is because:

 l shared code files are memory-mapped; once one process has caused a part of the
application to be paged in, subsequent processes have very fast access to the
same part of that application.

 l as the memory-mapped files are shared, only a small part of a function needs to
be copied into each active workspace that shares them; this reduces the overall
memory usage across all processes.

3.2 Code Execution
Code or data that is located in a shared code file is paged into virtual memory the first
time that it is used. This incurs a performance overhead; however, subsequent calls to
that code or data (or anything else on the same page) by the same or any other process
do not experience the same performance impact.

Similarly, the first time that the content of a name (function, operator or variable) in a
shared code file is amended also involves a performance overhead (the content of a

revision 20220124_182 8

Shared Code Files User Guide

shared code files is read-only; modifying the content of a name causes it to be copied
into the active workspace). However, subsequent writes to that the content of that name
by the same process do not experience the same performance impact.

Not only do subsequent calls/writes not experience the same performance impact, their
performance is often improved when compared with performing the same operations
without shared code files. This is due to the workspace memory manager running more
efficiently when it has a smaller set of data in the main workspace than if everything was
in the main workspace. Specifically:

 l more workspace is available for application data, making it easier for memory
manager algorithms to allocate memory.

 l the contents of the shared code files are ignored by compaction and garbage
collection algorithms.

revision 20220124_182 9

Shared Code Files User Guide

4 Technical Reference

The operations that comprise the shared code file mechanism are implemented using
three I-Beams – 8659⌶, 8666⌶ and 8667⌶. Specifically:

 l [names](8667⌶){slot}{file}
save shared code file – see Section 4.1

 l [nameclasses](8666⌶){file}
attach shared code files – see Section 4.2

 l (8666⌶)⎕NULL
assimilate shared code files – see Section 4.3

 l (8666⌶)0⍴⊂''
detach shared code files – see Section 4.4

 l R←(8659⌶)⍬
list shared code files – see Section 4.5

 l R←{slot}(8659⌶){ncs}
list attached names – see Section 4.6

4.1 Save Shared Code File
Purpose: Saves a shared code file.

Syntax: [names] (8667⌶) {slot} {file}

where:
 l names is a vector of character vectors or a matrix specifying the names to save;

this list of names of functions, operators and variables restricts the names in the
shared code file that are saved.

 l slot is the slot identifier (an integer in the range 1-8) for the unique fixed virtual
memory address at which to load the shared code file.

 l file is a character vector of the filename for the shared code file. If a filename
extension is not provided, then .dwx is used. If a file of this name already exists, or
the file cannot be created for any reason, then the operation will fail.

revision 20220124_182 10

Shared Code Files User Guide

A multi-user development team might need a strategy for creating (and
attaching) cycles of shared code files as shared code files could remain in
use for some time by members of the development team. This should not
be an issue with distributed applications.

This creates a shared code file, optionally based on a list of names of functions, operators
or variables. Restrictions apply to the location and structure of objects that can be placed
into a shared code file; most importantly, the names must all be visible in the root (#) of
the active workspace. For a complete list of restrictions, see Section 2.4.

4.2 Attach Shared Code File
Purpose: Attaches one or more shared code files to the active workspace.

Syntax: [nameclasses] (8666⌶) {file}

where:
 l nameclasses is a list of nameclass identifiers to be brought over (cannot include

sub-classes). The default is 2 3 4 9 (variables, functions, operators and
namespaces respectively).

 l file is a vector of character vectors of shared code files to load, or a single
character vector (a character scalar is not acceptable). If filename extensions are
not provided, then .dwx is used. The path can be absolute or relative to current
location; there is no sensitivity to WSPATH.

The effect of attaching shared code files is analogous to performing a)PCOPY (protected
copy) from the shared code files, that is:

 l names that already have a definition are preserved unaltered; if the same name
appears in more than one shared code file, then the files are searched in the
specified order and the first occurrence of the name is used.

 l names in attached files immediately affect the results of system functions that
provide metadata, such as ⎕NL or ⎕NC.

If any shared code files are already attached, then they are detached from the active
workspace before new shared code files are attached (see Section 4.4). Multiple shared
code files cannot be attached using separate calls to 8666⌶.

revision 20220124_182 11

Shared Code Files User Guide

4.3 Assimilate Shared Code Files
Purpose: Copies referenced objects in the shared code files into the active workspace.

Syntax: (8666⌶)⎕NULL

When the right argument to (8666⌶) is ⎕NULL, all referenced objects in the shared code
files are copied into the active workspace. The active workspace then contains all the
code and data that was visible to it when the shared code files were attached; it can then
be saved and used independently of the shared code files. The shared code files that are
attached to the active workspace are then disconnected from the active workspace.

Significant space might be required to assimilate all the code in the shared code
files into the active workspace. If a WSFULL error occurs then the operation will
fail; it cannot be rolled back and leaves the workspace in an indeterminate (but
consistent) state. In this situation, the shared code files are not disconnected from
the active workspace as doing so could result in further errors.

Only things that are the current referent copied. The process is driven from the
data not the name; this means that if multiple shared code files that include the
same names are attached, then only the first of these names is external and that is
the one that gets copied.

4.4 Detach Shared Code Files
Purpose: Detaches all shared code files from the active workspace.

Syntax: (8666⌶)0⍴⊂''

When the right argument to (8666⌶) is 0⍴⊂'' (that is, a zero-length list of names), any
existing attached shared code files are detached.

Detaching shared code files results in data being copied from the shared code files
as needed. However, namespaces are always copied when a shared code file is
first attached.

Before a shared code file is disconnected from the active workspace:
 l if a name that was brought into the active workspace when the shared code file

was attached has not had its associated code/data changed, then the name is
expunged from the active workspace.

 l if a name in the active workspace embeds references to objects residing in a
shared code file, then the entire definitions of the referenced objects are copied
(assimilated) into the active workspace. This includes (for example), tacit functions

revision 20220124_182 12

Shared Code Files User Guide

that are derived from functions in a shared code file and arrays that contain
references to data in a shared code file. These objects must still be functional
following the disconnect.

As shared code files are read-only, they cannot be updated while they are in use.
Instead, if a shared code file needs to be updated, it must be rebuilt. When a new
version of a shared code file becomes available, anyone using the old version
should detach it and attach the new one instead as soon as is practical.

4.5 List Shared Code Files
Purpose: Lists the shared code files that are attached to the current workspace.

Syntax: R←(8659⌶)⍬

where:
 l R is a 2-column matrix listing the shared code files that are attached to the current

workspace:
 o [;1] is the slot identifier for the fixed virtual memory address of the

shared code file.
 o [;2] is the name (including the filename extension) of the shared code file

that was loaded.

The rows of the matrix (one row for each shared code file) are ordered to correspond to
the order in which the shared code files were specified when they were originally
attached, that is, in the right argument to 8666⌶ (see Section 4.2).

4.6 List Slot Names
Purpose: Lists the names in the shared code file identified by the specified memory
address.

Syntax: R←{slot}(8659⌶){ncs}

where:
 l slot is the slot identifier (an integer in the range 1-8) for the unique fixed virtual

memory address of the shared code file.
 l ncs is an integer vector that would be a valid right argument to ⎕NL; it identifies

the nameclasses and subclasses for which the names should be listed.

revision 20220124_182 13

Shared Code Files User Guide

R lists the names in the shared code file identified by slot. If any element of ncs is
negative, then positive values in ncs are treated as if they were negative and R is a
vector of character vectors. Otherwise, R is a simple character matrix.

revision 20220124_182 14

Shared Code Files User Guide

5 Technical Details

This section contains discussions intended to clarify the functionality of shared code file
support.

5.1 Shared Code Files are Read Only
A shared code file is a read-only repository. Items within it can be modified, but doing so
can result in data being copied into the main workspace.

Consider these cases where item A is modified:
 1. A is a function

 l B←A will introduce a new name B into the main workspace but no new data.
 l When A is edited or otherwise re-fixed, the new version will be stored in

the main workspace.
 2. A is a simple array such as 1 2 3 4.

 l B←A will introduce a new name B into the main workspace but no new data.
 l C←A,1 will introduce a new name C and new data into the main workspace.
 l A,←1 will create new data in the main workspace.

 3. A is a nested array such as 'AB' 'CD'.
 l B←A will introduce a new name B into the main workspace but no new data.
 l A[1]←⊂'XY' will introduce some new data into the main workspace.

In each of these cases, the content of the attached shared code file remains unaltered.
This means that, if names of items in a shared code file are expunged using ⎕EX and the
shared code file(s) are detached and reattached, then the items in the shared code file
will be restored to their original values. The only way to change the values in a shared
code file is to recreate the entire file.

Although a shared code files can contain data, these values should either be constants or
initial values for structures that will be copied into the workspace as soon as the
application modifies them.

revision 20220124_182 15

Shared Code Files User Guide

5.2 Attaching, Assimilating and Detaching Shared
Code Files
When one or more shared code files is attached, the following rules apply:

 l When items with the same name exist in multiple workspaces, the one that is used
in the active workspace is the first one found when going through the workspaces
in the following order:

 1. the active workspace
 2. the shared code file specified first when attaching (see Section 4.2)
 3. the shared code file specified second when attaching, etc.

 l When the shared code files are assimilated:
 o all references to each shared code file are resolved by copying data from

the shared code file to the active workspace as required.
 l When the shared code files are detached:

 o names in the active workspace that reference data in a shared code file are
deleted (namespace references are not deleted).

 o all remaining references to the shared code file are resolved by copying
data from the shared code file to the active workspace as required.

EXAMPLE

The active workspace MAIN is populated using the following assignments:
 FN1 ← {⍵ × 1}
 FN2 ← {⍵ × 2}
 NS1 ← ⎕NS ''
 NS1.A ← 1

Name Parent Value

FN1 # {⍵ × 1}

FN2 # {⍵ × 2}

NS1 # Namespace ref

A NS1 1

revision 20220124_182 16

Shared Code Files User Guide

Shared code files DWS1 is populated using the following assignments:
 FN1 ← {⍵ × 1.1}
 FN3 ← {⍵ × 3}
 V ← 'AB' 'CD'
 NS1 ← ⎕NS ''
 NS1.A ← 2
 NS1.B ← 3

Name Parent Value

FN1 # {⍵ × 1.1}

FN3 # {⍵ × 3}

V # 'AB' 'CD'

NS1 # Namespace ref

A NS1 2

B NS1 3

Shared code files DWS2 is populated using the following assignments:
 FN3 ← {⍵ × 3.1}
 FN4 ← {⍵ × 4}
 NS2 ← ⎕NS ''
 NS2.A ← 4
 NS3 ← ⎕NS ''
 NS3.A ← 5

Name Parent Value

FN3 # {⍵ × 3.1}

FN4 # {⍵ × 4}

NS2 # Namespace ref

A NS2 4

NS3 # Namespace ref

A NS3 5

revision 20220124_182 17

Shared Code Files User Guide

After attaching DWX1 and DWX2 (in that order) to MAIN the following will be accessible:

Name Parent Value Location of Value Notes

FN1 # {⍵ × 1} WS FN1 in DWX1 is inaccessible

FN2 # {⍵ × 2} WS

FN3 # {⍵ × 3} DWX1 FN3 in DWX2 in inaccessible

FN4 # {⍵ × 4} DWX2

V # 'AB' 'CD' DWX1

NS1 # Namespace ref

A NS1 1 WS
NS1.A and NS1.B in
DWX1 are inaccessible

NS2 # Namespace ref

A NS2 4 DWX2

NS3 # Namespace ref

A NS3 5 DWX2

Following these assignments:
 FN3 ← {⍵ × 3.2}
 FN5 ← FN4
 V[1] ← ⊂'XY'
 NS2.B ← 6

The following are now accessible:

Name Parent Value Location of Value Notes

FN1 # {⍵ × 1} WS

FN2 # {⍵ × 2} WS

FN3 # {⍵ × 3.2} WS Updated value

FN4 # {⍵ × 4} DWX2

FN5 # {⍵ × 4} DWX2

revision 20220124_182 18

Shared Code Files User Guide

Name Parent Value Location of Value Notes

V # 'XY' 'CD' Split between WS and DWX1

NS1 # Namespace ref

A NS1 1 WS

NS2 # Namespace ref

A NS2 4 DWX2

B NS2 6 WS New value

NS3 # Namespace ref

A NS3 5 DWX2

The shared code files are now disconnected. This is achieved either by assimilating them
into the active workspace or by detaching them; the result of each of these operations is
shown below.

Following assimilation of the shared code files, the main workspace will contain:

Name Parent Value Notes

FN1 # {⍵ × 1}

FN2 # {⍵ × 2}

FN3 # {⍵ × 3.2}

FN4 # {⍵ × 4} Copied into WS

FN5 # {⍵ × 4} Copied into WS

V # 'XY' 'CD' Partially copied into WS

NS1 # Namespace ref

A NS1 1

NS2 # Namespace ref

A NS2 4 Copied into WS

revision 20220124_182 19

Shared Code Files User Guide

Name Parent Value Notes

B NS2 6

NS3 # Namespace ref

A NS3 5 Copied into WS

Alternatively, following detachment of the shared code files, the main workspace will
contain the following values:

Name Parent Value Notes

FN1 # {⍵ × 1}

FN2 # {⍵ × 2}

FN3 # {⍵ × 3.2}

FN5 # {⍵ × 4} Copied into WS

V # 'XY' 'CD' Partially copied into WS

NS1 # Namespace ref

A NS1 1

NS2 # Namespace ref

A NS2 4 Copied into WS, namespace has changed

B NS2 5

NS3 # Namespace ref All namespaces in shared code files are retained
(see Section 2.3)

A NS3 5 Copied into WS

revision 20220124_182 20

Shared Code Files User Guide

A Worked Example

This appendix comprises an annotated example that demonstrates the use of some of
the cases of the I-Beam functions described in Chapter 4 (examples of assimilate and
detach are not included).

First, load the dfns workspace:
)LOAD dfns
C:\...\ws\dfns.dws saved Sun Apr 12 17:18:38 2015

An assortment of D Functions and Operators.

 tree # ⍝ Workspace map.
 ↑¯10↑↓attrib ⎕nl 3 4 ⍝ What's new?
 ⍕notes find 'Word' ⍝ Apropos "Word".
 ⎕ed'notes.contents' ⍝ Workspace overview.

Now compute the size of all the functions, variables and namespaces in the workspace
(approximately 6 MB):
 +/⎕SIZE ⎕NL ⍳10
5947936

Define a helper function called saveDWX to create a shared code file:
 saveDWX←8667⌶

Create a shared code file containing everything in the dfns workspace, mapped at virtual
memory address 1:
 saveDWX 1 'dfns.dwx'

revision 20220124_182 21

Shared Code Files User Guide

If this fails due to the file already existing, then erase it and try again:
 saveDWX 1 'dfns.dwx'
 DOMAIN ERROR: Shared code file already exists
 saveDWX 1 'dfns.dwx'
 ∧

 ⎕NDELETE 'dfns.dwx'
 saveDWX 1 'dfns.dwx'

Clear the workspace and define two new helper functions, attachDWX and listDWX:

)CLEAR
clear ws

 attachDWX←8666⌶
 listDWX←8659⌶

Attach the shared code file to the active workspace and compute how much workspace
was consumed in doing so:
 wa←⎕WA

 attachDWX 'dfns.dwx'

 ⎕WA-wa
 ̄64320

(rather than consuming space, 64 KB was released due to workspace reorganisation)

Check how many names are now visible in the workspace and call the easter function
to find the date for Easter Sunday in 2015 (to prove that functions in the attached shared
code file can be run successfully):
 ≢⎕NL ⍳10
273

 easter 2015
20150405

revision 20220124_182 22

Shared Code Files User Guide

List the shared code files that are attached to the active workspace (the first column
shows the slot identifier). Next, display the first 5 names made available by the shared
code file in slot identifier 1:
 listDWX ⍬
1 dfns.dwx

 5↑1 listDWX ⍳10
Cholesky
NormRand
UndoRedo
X
_fk

Finally, verify that the result of ⎕NL and the names exposed by the shared code file are
identical (the only difference should be the three names defined since the)CLEAR
operation):
 (⎕NL ⍳10)≡1 listDWX ⍳10
0

 ⍴1 listDWX ⍳10
270 12

 ⍴⎕NL ⍳10
273 12

 (↓⎕NL ⍳10)~↓1 listDWX ⍳10
attachDWX listDWX wa

revision 20220124_182 23

Shared Code Files User Guide

Index

8
8659 I-beam 13
8666 I-beam 11-12
8667 I-beam 10

A
Assimilating in active workspace 12
Attaching to active workspace 11

B
Benefits 3

D
Detaching from active workspace 12

F
Fundamental limitations 4

I
I-Beams

8659 – List shared code files 13
8659 – List slot names 13
8666 – Assimilate shared code file 12
8666 – Attach shared code file 11
8666 – Detach shared code file 12
8667 – Save shared code file 10

L
Limitations

Fundamental 4
Summary 6
Temporary 5

Listing 13
Listing slot names 13

P
Performance improvements

Application start-up 8
Code execution 8

S
Saving 10
Summary of limitations 6

T
Temporary limitations 5

W
Worked example 21

revision 20220124_182 24

Shared Code Files User Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 Benefits Offered by Shared Code Files
	2.2 Fundamental Limitations
	2.3 Temporary Limitations
	2.4 Summary of Limitations

	3 Performance
	3.1 Loading
	3.2 Code Execution

	4 Technical Reference
	4.1 Save Shared Code File
	4.2 Attach Shared Code File
	4.3 Assimilate Shared Code Files
	4.4 Detach Shared Code Files
	4.5 List Shared Code Files
	4.6 List Slot Names

	5 Technical Details
	5.1 Shared Code Files are Read Only
	5.2 Attaching, Assimilating and Detaching Shared Code Files

	A Worked Example
	Index

